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Recollections

In homological algebra one studies chain complexes, i.e. modules
C, for n > 0 together with homomorphisms 9, : C, — C,_1 such

that 0,0,4+1 = 0. Diagramatically we have

On On 0] S,
c: 2 iCh s 2 G— G
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Recollections

In homological algebra one studies chain complexes, i.e. modules
C, for n > 0 together with homomorphisms 9, : C, — C,_1 such

that 0,0,4+1 = 0. Diagramatically we have

On On 0] S,
c: 2 iCh s 2 G— G

Let us call the above chain complex C and let

Z,(C) = Ker0p and let Bn(C) =1m0py1

Note that B,(C) is a submodule of Z,(C) so it makes sense to
define Ho(C) = Z,(C)/Bu(C).
H,(C) is called the n*" homology of C.
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Let
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be exact
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e
Basics

Of fundamental concern was the study of chain complexes and how
they are created.

Let
0— M —M-—M —0
be exact
The operators Hom (-, —) and — ® — give rise to three exact
sequences

0 — Hom (N, M") — Hom (N, M) — Hom (N, M")
0 — Hom (M", N) —s Hom (M, N) —s Hom (M’, N)
MSIN—MIN— M ON-—0

Note the missing 0 in each of these.
Question: How can we extend these sequences?
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Preliminaries

» Simplex The n-simplex is the n + 1-tuple [0,1,2...n]. The
components are called the vertices of the simplex.

» Simplex — generalize An n-simplex is an increasing sequence
of n+ 1 non-negative integers.
Notation: Without loss of generality we will write A” for an
n-simplex.

» Face The it" face of n-simplex is the n — 1-simplex obtained
by deleting the /™" vertex.
So the 0 face of [0,1,2...n]is [1,2...n] and the it" face of

[Vo, Vi, .-y Va] iS [VO, iy« vy Vie1, Vidls -« - Vi)

Notation: We write Delta’ as the it face of the n-simplex.
» Boundary The boundary of the simplex [vg, vi, ..., v,] is the

formal sum

n

E J . ;
(_]-) [V07"'7‘/J—17Vj+17"'7vn]



Homology

Let X be a topological space.
» Let C, be the collection of all maps A, — X.
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Homology

Let X be a topological space.
» Let C, be the collection of all maps A, — X.
» The C, form a chain complex with the boundary operator as
the connecting homomorphism.
» The homology of this complex is the homology of the space X.

Question: Can we compute the homology of simple spaces.
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Simplicial Homology

Let X be a triangulated space. This means that X is constructed
by gluing together simpleces.

Example X

b c a

a

b c a

is a representation of the torus.
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Simplicial Homology — cont.

Let C, be the free group generated by the n-simplices
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Let C, be the free group generated by the n-simplices
In the above example there are

» 8 O-simplices: a, b, c,d plus 4 unlabeled O-simplices

> 18 l—simplices: [aa b]7 [aa C]? [aa d]7 [aa e]? [b7 C]7 [d7 e]
plus 12 unlabeled 1-simplices.

> 18 2-simplices
Thus Go =78 G =78 G =7%and C,=0if n>2.
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Let C, be the free group generated by the n-simplices
In the above example there are

» 8 O-simplices: a, b, c,d plus 4 unlabeled O-simplices
» 18 1-simplices: [a, b], [a, c],[a, d], [a, €], [b, c], [d, €]
plus 12 unlabeled 1-simplices.
> 18 2-simplices
Thus o =278 G =2 G =7Z%and C,=0if n>2.
The boundary operator turns this into a chain complex. The
homology of the chain complex is the homology of X.
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Simplicial Homology — cont.

Let C, be the free group generated by the n-simplices
In the above example there are

» 8 O-simplices: a, b, c,d plus 4 unlabeled O-simplices
» 18 1-simplices: [a, b], [a, c],[a, d], [a, €], [b, c], [d, €]
plus 12 unlabeled 1-simplices.
> 18 2-simplices
Thus o =278 G =2 G =7Z%and C,=0if n>2.
The boundary operator turns this into a chain complex. The

homology of the chain complex is the homology of X.
Question: How does one compute homology groups of spaces?
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